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Abstract

When we investigate the different structures in accretion flows, we reveal the
relation between the generation of a certain type of instability and the arising of a structure
Jormation mechanism, when all required conditions are available. Herve, we shall consider

the effect of svme instabilities and the formations generated by them.
Magnetohydrodynamical instabilities

a) Balbus-Hawley instability

There are places in hydrodynamical flows, where the velocity field
changes abraptly (the shock fronts). In these places, as a result of the
differential rotation of the parts of the flow with great differences in density
and velocity, conditions are generated for magnetic shear instability, which
is known as Balbus-Hawley instability. In the presence of a magnetic field,
destabilization effect of the differentially rotating flows is available, and this
instability is the mechanism generating flow turbulence [7].

b) Kelvin - Helmholtz instability

This instability acts on the boundary of two fluid flows, which in our
case could be the two parts of an accretion flow. If the boundary is weakly
perturbed, velocitics increase and at different densities, the following
instability condition is derived:

D oo, ((Vi -v, k) < (191 + 302)(;01 - Py )k, 8
where v, and v, are the velocities of two flows
and p, , p, are their densities.
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The relation between frequency @ and wave vector k, is given by
the dispersion relation {47:

2

The Kelvin - Helmholtz instability is generated when the expression
in the square brackets of the above relation is negative and there is a
difference in the two flows’ velocities. In the presence of this instability,
undulations are formed at the boundary; as a result of this, with further
progressing of this instability, vortices are formed.

Other instabilities

The gencration of structures in accretion discs is caused not only by
magnetohydrodynamical instability. In the fluid media of accretion discs,
conditions for other types of instabilities are observed,

a) Turing instability

In some systems, thc coupling between two transport processes
generates instability mechanism. Then the development of this instability is
determined by the difference of the diffusion coefficients along the different
directions of the transport acting there [1].

The diffusion coefficient participates in the reaction-diffusion
equation, which has the following standard form [2]:

2 aa—sz(C)«kDVzC

where the first term in the right-hand side is reaction and the second
is diffusion. D is the diffusion coefficient {or matrix of the transport
coefficient), C - a concentration of matter.

The reaction-diffusion systems are a manifestation of spatial or
temporal patterns if they are far from thermo-dynamical equilibrium [2],
which is an important condition for dissipative structures’ formation [8]. An
key aspect of all application of the reaction-diffusion equation, such as
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partial differential equation, is this simple combination of reaction and
diffusion in the right-hand side of the equation.
Then, taking into account the condition for Turing instability, the
reaction-diffusion equation takes the form:
2 2
(3) a_czF(C)JrD 9C,p o€
o1 * ox® 7 ay?
This difference between the diffusion coefficients of the two
components is the necessary restriction for generation of Turing instability

[2].

This assertion can be derived by the following representations and
transformations.

The accretion disc is considered as a hydro-dynamical system and is
described by hydro-dynamical equations [3].

First, this is the continuity cquation, which expresses mass conservation:

@) %0 +V{o)=0

The conservation of momentum for each gas element is represented
by Euler equation:

(5) p% +ovVy=-VP+ F

where for both equations, the quantities ©0,v,P,F are respectively:
density, velocity, pressure and a certain force.

Let us present the motion equation for viscous fluid (Navier-Stokes
€q.) in cylindrical coordinates. Because averaging takes place along the z-
direction, we shall express all derivatives in the terms of the coordinates
(r,g):

oV c V v ? &
ﬂ.fﬁ.i.vr..d_v_’_"+_¢,.§£__¢_:-—ia_[. iF,."i
ot or  r dp r por p
6 .1 .
= ) V., 19%, L v, 29V, v,
o’ P ap: r or r? Ap rt
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Here v is kinematic viscosity, V, and V, are the two velocity

components.
The encrgy transfer equation can be represented as follows:

RS (A

1
where 5 ov? - the kinetic energy per unit volume,

QL€ - internal or thermal energy per unit volume.

The last term in the square brackets represents the so-called pressure
work.

On the right-hand side:

F,. - the radiative flux vector;

rad
— V.F,, - expresses the rate at which radiant energy is being tost by
emission, or increased by absorption.
In an accretion disc we consider the transport of "vortical" functicn
or vorticity, which may be denoted by W . This term is provided by vortical
equation [5]:

0 (24 v X
ot 0
which is obtained combining the rotation of the momentum equation

and the continuity equation. Thus, ¥ =V x¥% and eq. {10) yields:

oY sy | L
(u)[3;+vmvﬂp_f

We express this equation in cylindrical coordinates in terms of the
7, again;
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Here, f expresses the transport mechanism of the vortex or this is
the diffusion from eq. (3) and in our consideration, S has the form: DV*¥,

Taking into account vortical equation (11) and expressions (12) and
(13), the rcaction-diffusion cquation (3) takes the form (8]

¥
(14) 5 ~=i{r,p)+ D VY,
{

d¥, 5
(15) 5 :g(r,(a)+D¢V ¥,

where i and g are the source functions, having the form: (¥.V)y

‘Thus we obtain two equations with different diffusion cocfficients,
expressed for both components,

The cvidence that, in accretion discs, the necessary restriction for the
ratio between D, and D, 1o be not equal to unit confirms the possibility for

generation of Turing instability in this reaction-diffusion system.

Since these instabilities are the expression of a spatial pattern for the
bifurcation area, as a result of them, some structures may be formed in the
disc, namely: vortical structures and the so-called Rossby solitons.

The theory of the Turing structures is just one of a variety of such
mechanisms of pattern structures formation; here, we showed that this
mechanism holds for the hydro-dynamical system of the accretion disk.

But what do actually the Rossby vortices represent and which other
instabilities give rise to them,

b} Rossby instability

In studying a non-magnetized Keplerian accretion disc, as a result of
non-axisymmetric perturbations, instability arises which generates Rossby
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vorlices in non-linear limit. The presence of such vortices might be crucial
for the hydro-dynamical transport of angular momentum in accretion discs
[6]. A wave of non-linear Rossby vortices carries the mass and cntropy
maximum inward, exciting further vortices, which {ransport the angular
momentum outward,

Here, we shall use again the cylindrical system of coordinate to
express the basic equations of a non-barotropic disc. We shall consider

h
surface density E(r)z sz,o(r,z) and vertically integrated pressurc
-k
h

P(r}= J dzp(r, z). The perturbed quantities of surface density, pressure and
-h
velocity are expressed as follows:

£=34+8&{r,¢.1)
(16) P=P+6P(r,p1)
T=v+ §v(r, gé,t)

I

Thus, wc obtain the equations for the perturbed disc;

2

+3Vi=0
D1
(17) 91:-ivﬁ-v¢
Dt b

L oot B
Dt| 3!

where D/Dr=0/dr+v.V and §S=P/2" is the entropy of the disc

matter. Here, the last eq. ( ) shows the isentropic behavior of the disc matter.
Since this instability is related to the entropy behaviour, ultimatcly,

the so-called key function SR(r):A(r)S%(r) is derived, which has a
maximum or minimum. Then, instability is possible only provided

2,
ln(AS/r] disappears at some 7.
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Here, in the way described above, we obtain again the vortical equation in
the form;

DY VEXVpP ‘ .
( J:—"—, where ¥, = £V xv is the vorticity.

i z
D 2 b
For a barotropic flow the right-hand side of the equation is zero and each
fluid element conserves its specific vorticity.
In the opposite case, the term VIXVP o VT XVS destroys this

censervation, providing the pressurc force to generate vortices in the flow.

Comments

Here we have not mentioned all types of instabilities, which act in
accretion flow in general. Our aim was to show their reference 10 structures
formation in accretion discs. This was proven by analytical computation,
based on the major accretion disc equations and the relevant instability
expressions,
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BJIMSAHHUETO HA ONIPEJEJIEH BHA HEYCTOMYUBOCTH [IPU
CTPYKTYPOOBPA3YBAHETO B AKPEIIMOHEH AHUCK

H.B. Andpeesa, JI.T. Dununoce, M. M. Humumposa
Huemumym 3a xocMusecky uscneapanust, GAH

Pesmome

Ot BaXHO 3HAYEHNME TIPY U3CIEABANETO Ha AKPELMOHHUTE TECUCHHS
€ OTKpHBAHCTO Ha Bpb3KaTa MEXY 10SBATA HA BWJ HEYCTOMUHBOCT U
BL3HHMKBAHETO HA MCXalM3BM 3a CTPYKTYpooDpasyBaHe, KaTO ¢4 HAJIHLE
BCHYKH MSHCKBAHU yCIOBHA 3a TO3M iporec. Ty Iue pasiviefame mposBaTa
CaMO Ha HAKOW BULOBE HCYCTOMYMBOCTH H 33pAXAAIMTC CE BCIISICTBUE HA
TAX GOPMHUPOBAHHS,

31





